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About the Speakers

§ Pavan Balaji:	Computer	Scientist,	Mathematics	and	Computer	
Science	Division,	Argonne	National	Laboratory

§ William	Gropp:	Professor,	University	of	Illinois,	Urbana-
Champaign;	Acting	Director,	NCSA

§ Torsten Hoefler:	Assistant	Professor,	ETH	Zurich	

§ Rajeev	Thakur:	Senior	Computer	Scientist,	Argonne	National	
Laboratory

§ All	four	of	us	are	deeply	involved	in	MPI	standardization	(in	
the	MPI	Forum)	and	in	MPI	implementation
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Outline

Morning

§ Introduction
– MPI-1,	MPI-2,	MPI-3

§ Running	example:	2D	stencil	code	
– Simple	point-to-point	version

§ Derived datatypes
– Use	in	2D	stencil	code

§ One-sided	 communication
– Basics	 and	new	features	 in	MPI-3

– Use	 in	2D	stencil	 code

– Advanced	topics

• Global	address	space	
communication

Afternoon

§ MPI	and	Threads
– Thread	safety	specification	in	MPI
– How	it	enables	hybrid	programming
– Hybrid	(MPI	+	shared	memory)	version	

of	2D	stencil	code

§ Nonblocking collectives
– Parallel	FFT	example

§ Process	 topologies
– 2D	stencil	example

§ Neighborhood	collectives
– 2D	stencil	example

§ Recent	efforts	 of	the	MPI	Forum
§ Conclusions
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MPI-1

§ MPI	is	a	message-passing	library	interface	standard.
– Specification,	 not	implementation
– Library,	not	a	language

§ MPI-1	supports	the	classical	message-passing	programming	
model:	basic	point-to-point	communication,	collectives,	
datatypes,	etc

§ MPI-1	was	defined	(1994)	by	a	broadly	based	group	of	
parallel	computer	vendors,	computer	scientists,	and	
applications	developers.
– 2-year	intensive	 process

§ Implementations	appeared	quickly	and	now	MPI	is	taken	
for	granted	as	vendor-supported	software	on	any	parallel	
machine.

§ Free,	portable	implementations	exist	for	clusters	and	other	
environments	(MPICH,	Open	MPI)
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MPI-2

§ Same	process	of	definition	by	MPI	Forum

§ MPI-2	is	an	extension	of	MPI
– Extends	 the	message-passing	 model

• Parallel	 I/O

• Remote	memory	operations	 (one-sided)

• Dynamic	process	management

– Adds	other	 functionality
• C++	and	Fortran	90	bindings

– similar	to	original	C	and	Fortran-77	bindings

• External	 interfaces

• Language	 interoperability

• MPI	interaction	with	threads
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6

Timeline of the MPI Standard
§ MPI-1	(1994),	presented	 at	SC’93

– Basic	point-to-point	communication,	collectives,	datatypes,	etc

§ MPI-2	(1997)
– Added	parallel	I/O, Remote	Memory	Access	(one-sided	operations),	dynamic	processes,

thread	support,	C++	bindings,	…

§ ---- Stable	for	10	years	----

§ MPI-2.1	(2008)
– Minor	clarifications	and	bug	fixes	to	MPI-2

§ MPI-2.2	(2009)
– Small	updates	and	additions	to	MPI	2.1

§ MPI-3.0	(2012)
– Major	new	features	and	additions	to MPI

§ MPI-3.1	(2015)
– Minor	updates	and	fixes	to	MPI	3.0
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Overview of New Features in MPI-3
§ Major	new	features

– Nonblocking collectives
– Neighborhood	collectives
– Improved	one-sided	communication	interface
– Tools	interface
– Fortran	2008	bindings

§ Other	new	features
– Matching	Probe	and	Recv for	thread-safe	probe	and	receive	
– Noncollective communicator	creation	function
– “const”	correct	C	bindings
– Comm_split_type function
– Nonblocking Comm_dup
– Type_create_hindexed_block function

§ C++	bindings	removed
§ Previously	deprecated	 functions	removed
§ MPI	3.1	added	nonblocking collective	 I/O	functions
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Status of MPI-3.1 Implementations
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NBC ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Nbr.	Coll. ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✔ ✔ ✔

RMA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ Q2’17 ✔ ✔ ✔

Shr.	mem ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ * ✔ ✔ ✔

MPI_T ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ * Q1’17 ✔ ✔ ✔

Comm-create	
group ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ * ✔ ✔ ✔

F08	Bindings ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✘ ✘ Q1’17 ✔ ✔ ✔

New	Dtypes ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Large	Counts ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ Q1’17 ✔ ✔ ✔

MProbe ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ Q1’17 ✔ ✔ ✔

NBC	I/O ✔ Q4’16 ✔ ✔ ✘ ✔ ✘ ✘ ✔ ✘ ✔ ✘ ✘ Q1’17 ✔ ✘ ✔

1 Open	Source	but	unsupported 2 No	MPI_T	 variables	exposed *	Under	development (*)	Partly	done

Release	dates	are	estimates	and	are	subject	to	change	at	any	time.
“✘”	 indicates	no	publicly	announced	plan	to	implement/support	that	feature.

Platform-specific	restrictions	might	apply	to	the	supported	features



Important considerations while using MPI

§ All	parallelism	is	explicit:	the	programmer	is	responsible	for	
correctly	identifying	parallelism	and	implementing	parallel	
algorithms	using	MPI	constructs
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Web Pointers

§ MPI	standard	 :	http://www.mpi-forum.org/docs/docs.html

§ MPI	Forum	:	http://www.mpi-forum.org/

§ MPI	implementations:	
– MPICH	:	http://www.mpich.org

– MVAPICH	:	http://mvapich.cse.ohio-state.edu/

– Intel	MPI:	http://software.intel.com/en-us/intel-mpi-library/

– Microsoft	MPI:	https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

– Open	MPI	:	http://www.open-mpi.org/

– IBM	MPI,	Cray	MPI,	HP	MPI,	TH	MPI,	…

§ Several	MPI	tutorials	can	be	found	on	the	web
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New Tutorial Books on MPI
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§ For	basic	MPI
– Using	MPI,	3rd edition,	2014,	by	William	Gropp,	Ewing	Lusk,	and	Anthony	Skjellum

– https://mitpress.mit.edu/using-MPI-3ed

§ For	advanced	MPI,	including	MPI-3

– Using	Advanced	MPI,	2014,	by	William	Gropp,	Torsten Hoefler,	Rajeev	Thakur,	
and	Ewing	Lusk

– https://mitpress.mit.edu/using-advanced-MPI



New Book on Parallel Programming Models
Edited	by	Pavan Balaji
• MPI: W.	Gropp and	R.	Thakur
• GASNet: P.	Hargrove
• OpenSHMEM: J.	Kuehn	and	S.	Poole
• UPC: K.	Yelick and	Y.	Zheng
• Global	Arrays: S.	Krishnamoorthy,	J.	Daily,	A.	Vishnu,	

and	B.	Palmer
• Chapel: B.	Chamberlain
• Charm++: L.	Kale,	N.	Jain,	and	J.	Lifflander
• ADLB: E.	Lusk,	R.	Butler,	and	S.	Pieper
• Scioto: J.	Dinan
• SWIFT: T.	Armstrong,	J.	M.	Wozniak,	M.	Wilde,	and	I.	

Foster
• CnC: K.	Knobe,	M.	Burke,	and	F.	Schlimbach
• OpenMP: B.	Chapman,	D.	Eachempati,	and	S.	

Chandrasekaran
• Cilk Plus: A.	Robison	and	C.	Leiserson
• Intel	TBB: A.	Kukanov
• CUDA: W.	Hwu and	D.	Kirk
• OpenCL: T.	Mattson

https://mitpress.mit.edu/models
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Our Approach in this Tutorial

§ Example	driven
– 2D	stencil	code	used	as	a	running	example	 throughout	 the	tutorial

– Other	examples	used	to	illustrate	specific	 features

§ We	will	walk	through	actual	code

§ We	assume	familiarity	with basic	concepts	of	MPI-1

1313Advanced	MPI,	SC16	(11/14/2016)



Regular Mesh Algorithms

§ Many	scientific	applications	involve	the	solution	of	partial	
differential	equations	(PDEs)

§ Many	algorithms	for	approximating	the	solution	of	PDEs
rely	on	forming	a	set	of	difference	equations
– Finite	difference,	 finite	elements,	 finite	volume

§ The	exact	form	of	the	difference	equations	depends	on	the	
particular	method
– From	the	point	of	view	of	parallel	programming	 for	these	

algorithms,	 the	operations	 are	the	same
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Poisson Problem

§ To	approximate	the	solution	of	the	Poisson	Problem	∇2u	=	f on	
the	unit	square,	with	u defined	on	the	boundaries	of	the	
domain	(Dirichlet boundary	conditions),	this	simple	2nd	order	
difference	scheme	is	often	used:
– (U(x+h,y)	 - 2U(x,y)	+	U(x-h,y))	 /	h2 +	

(U(x,y+h)	 - 2U(x,y)	+	U(x,y-h))	 /	h2 =	f(x,y)
• Where	the	solution	U	is	approximated	 on	a	discrete	 grid	of	points	x=0,	h,	2h,	
3h,	…	,	(1/h)h=1,	y=0,	h,	2h,	3h,	…	1.

• To	simplify	the	notation,	U(ih,jh)	is	denoted	Uij

§ This	is	defined	on	a	discrete	mesh	of	points	(x,y)	=	(ih,jh),	for	a	
mesh	spacing	“h”
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The Global Data Structure

§ Each	circle	is	a	mesh	point

§ Difference	 equation	evaluated	 at	
each	point	involves	 the	four	
neighbors

§ The	red	“plus”	is	called	the	
method’s	 stencil

§ Good	numerical	algorithms	 form	a	
matrix	equation	Au=f;	solving	 this	
requires	 computing	Bv,	where	B	is	
a	matrix	derived	 from	A.	These	
evaluations	 involve	computations	
with	the	neighbors	 on	the	mesh.
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The Global Data Structure

§ Each	circle	is	a	mesh	point

§ Difference	 equation	evaluated	 at	
each	point	involves	 the	four	
neighbors

§ The	red	“plus”	is	called	the	
method’s	 stencil

§ Good	numerical	algorithms	 form	a	
matrix	equation	Au=f;	solving	 this	
requires	 computing	Bv,	where	B	is	
a	matrix	derived	 from	A.	These	
evaluations	 involve	computations	
with	the	neighbors	 on	the	mesh.

§ Decompose	mesh	into	equal	 sized	
(work)	pieces
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Necessary Data Transfers
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Necessary Data Transfers
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Necessary Data Transfers

§ Provide	access	 to	remote	data	through	a	halo exchange	 (5	point	stencil)
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Necessary Data Transfers

§ Provide	access	 to	remote	data	through	a	halo exchange	 (9	point	with	
trick)
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The Local Data Structure

§ Each	process	has	its	local	“patch”	of	the	global	array
– “bx”	and	“by”	are	 the	sizes	of	the	local	array

– Always	allocate	a	halo	around	the	patch
– Array	allocated	of	size	 (bx+2)x(by+2)

bx

by
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2D Stencil Code Walkthrough

§ Code	can	be	downloaded	from	
www.mcs.anl.gov/~thakur/sc16-mpi-tutorial
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Datatypes
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Introduction to Datatypes in MPI

§ Datatypes allow	users	to	serialize	arbitrary data	layouts	into	a	
message	stream
– Networks	provide	serial	channels

– Same	for	block	devices	and	I/O

§ Several	constructors	allow	arbitrary	layouts
– Recursive	 specification	possible

– Declarative specification	 of	data-layout
• “what”	and	not	“how”,	leaves	 optimization	 to	implementation	 (many
unexplored possibilities!)

– Choosing	the	right	constructors	 is	not	always	simple
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Derived Datatype Example
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

contig contig contig

vector

indexed

struct



MPI’s Intrinsic Datatypes

§ Why	intrinsic	types?
– Heterogeneity,	 nice	to	send	a	Boolean	 from	C	to	Fortran

– Conversion	 rules	are	complex,	not	discussed	 here	

– Length	matches	 to	language	 types	
• No	sizeof(int)	mess

§ Users	should	generally	use	intrinsic	types	as	basic	types	for	
communication	and	type	construction

§ MPI-2.2	added	some	missing	C	types
– E.g.,	unsigned	 long	long	
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MPI_Type_contiguous

§ Contiguous	array	of	oldtype

§ Should	not	be	used	as	last	type	(can	be	replaced	by	count)
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0 1 2 3 4 5 6 7 8 9 10 11

contig

1817150 1 2 3 4 5 6 7 8 9 10 11 12 14 16

struct struct struct

contig

13

MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype)



MPI_Type_vector

§ Specify	strided blocks	of	data	of	oldtype

§ Very	useful	for	Cartesian	arrays
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vector 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

vector

19 20

struct struct

0 1 2 3 4 5 6 7 8 9 10 11

MPI_Type_vector(int count, int blocklen, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)



Use Datatype in Halo Exchange

Advanced	MPI,	SC16	(11/14/2016) 30

bx

by

vector	(count=by,	blocklen=1,	
stride=bx+2,	 MPI_DOUBLE,	 …)

contig (count=bx,	MPI_DOUBLE,	 …)	or	
count	with	MPI_DOUBLE



2D Stencil Code with Datatypes Walkthrough

§ Code	can	be	downloaded	from	
www.mcs.anl.gov/~thakur/sc16-mpi-tutorial
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MPI_Type_create_hvector

§ Stride	is	specified	in	bytes	instead	of	size	of	oldtype

§ Useful	for	composition,	e.g.,	vector	of	structs
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struct struct

hvector

19

struct struct

vector

stride	=	3	oldtypes

stride	=	11	bytes

MPI_Type_create_hvector(int count, int blocklen, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)



MPI_Type_create_indexed_block

§ Pulling	irregular	subsets	of	data	from	a	single	array
– dynamic	codes	with	index	lists,	expensive	 though!

– blen=2

– displs={0,5,8,13,18}
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Indexed_block

MPI_Type_create_indexed_block(int count, int blocklen,
int *array_of_displacements,
MPI_Datatype oldtype, MPI_Datatype *newtype)



MPI_Type_indexed

§ Like	indexed_block,	but	can	have	different	block	lengths
– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}
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indexed

MPI_Type_indexed(int count, int* array_of_blocklens,
int *array_of_displacements,
MPI_Datatype oldtype, MPI_Datatype *newtype)



MPI_Type_create_struct

§ Most	general	constructor,	allows	different	types	and	arbitrary	
arrays	(also	most	costly)
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0 1 2 3 4

struct

MPI_Type_create_struct(int count,
int *array_of_blocklens,
MPI_Aint *array_of_displacements,
MPI_Datatype *array_of_types,
MPI_Datatype *newtype)



MPI_Type_create_subarray

§ Convenience	function	for	creating	
datatypes for	array	segments

§ Specify	subarray of	n-dimensional	
array	(sizes)	by	start	(starts)	and	size	
(subsize)
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(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

MPI_Type_create_subarray(int ndims, int* array_of_sizes,
int *array_of_subsizes, int *array_of_starts,
int order, MPI_Datatype oldtype, MPI_Datatype *newtype)



MPI_Type_create_darray

§ Create	distributed	array,	supports	block,	cyclic	and	no	
distribution	for	each	dimension
– Very	useful	 for	I/O

MPI_Type_create_darray(int size, int rank, int ndims,
int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_BOTTOM and MPI_Get_address

§ MPI_BOTTOM	is	the	absolute	zero	address
– Portability	(e.g.,	may	be	non-zero	 in	globally	shared	memory)

§ MPI_Get_address
– Returns	 address	 relative	 to	MPI_BOTTOM

– Portability	(do	not	use	“&”	operator	 in	C!)

§ Very	important	to	
– build	struct datatypes

– If	data	spans	multiple	arrays

Advanced	MPI,	SC16	(11/14/2016) 38

int a = 4;
float b = 9.6;
MPI_Datatype struct; 

MPI_Get_address(&a, &disps[0]);
MPI_Get_address(&b, &disps[1]);

MPI_Type_create_struct(count,
blocklens[], disps,
oldtypes[], &struct);



Commit, Free, and Dup

§ Types	must	be	committed	before	use
– Only	the	ones	that	are	used!

– MPI_Type_commit may	perform	 heavy	optimizations	 (and	will	
hopefully)

§ MPI_Type_free
– Free	MPI	resources	 of	datatypes

– Does	not	affect	 types	built	from	 it

§ MPI_Type_dup
– Duplicates	a	type

– Library	abstraction	 (composability)
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Other Datatype Functions

§ Pack/Unpack
– Mainly	for	compatibility	to	legacy	libraries

– Avoid	using	it	yourself

§ Get_envelope/contents
– Only	for	expert	 library	developers

– Libraries	 such	as	MPITypes1 make	this	easier

§ MPI_Type_create_resized
– Change	extent	and	size	 (dangerous	 but	useful)

1http://www.mcs.anl.gov/mpitypes/
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Datatype Selection Order

§ Simple	and	effective	performance	model:
– More	parameters	 ==	slower

§ predefined	<	contig <	vector	<	index_block <	index	<	struct

§ Some	(most)	MPIs	are	inconsistent	
– But	this	rule	is	portable

§ Advice	to	users:
– Construct	datatypes hierarchically	bottom-up

W.	Gropp et	al.:	Performance	Expectations	and	Guidelines	for	MPI	Derived	Datatypes

Advanced	MPI,	SC16	(11/14/2016) 41



Advanced Topics: One-sided Communication



One-sided Communication

§ The	basic	idea	of	one-sided	communication	models	is	to	
decouple	data	movement	with	process	synchronization
– Should	be	able	to	move	data	without	requiring	 that	the	remote	

process	 synchronize

– Each	process	exposes	 a	part	of	its	memory	to	other	processes

– Other	processes	 can	directly	read	from	or	write	to	this	memory

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory

Remotely
Accessible
Memory

Remotely
Accessible
Memory

Remotely
Accessible 
Memory

Remotely
Accessible 
Memory

Global	
Address	
Space

Private
Memory

Private
Memory

Private
Memory

Private
Memory
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Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment
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One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment
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Comparing One-sided and Two-sided Programming

Process	0 Process	1

SEND(data)

RECV(data)

D
E
L
A
Y

Even	the	
sending	
process	 is	
delayed

Process	0 Process	1

PUT(data) D
E
L
A
Y

Delay	in	
process	1	
does	not	
affect	

process	0

GET(data)
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MPI RMA can be efficiently implemented

§ “Enabling	Highly-Scalable	Remote	Memory	Access	Programming	with	MPI-3	One	Sided”	by	
Robert	Gerstenberger,	Maciej Besta,	Torsten Hoefler (SC13	Best	Paper	Award)

§ They	implemented	complete	MPI-3	RMA	for	Cray	Gemini	(XK5,	XE6)	and	Aries	(XC30)	
systems	on	top	of	lowest-level	Cray	APIs

§ Achieved	better	latency,	bandwidth,	message	rate,	and	application	performance	than	Cray’s	
MPI	RMA,	UPC,	and	Coarray Fortran
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Application Performance with Tuned MPI-3 RMA

3D	FFT MILC

Distributed	Hash	Table Dynamic	Sparse	Data	Exchange
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Gerstenberger,	Besta,	Hoefler (SC13)
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MPI RMA is Carefully and Precisely Specified

§ To	work	on	both	cache-coherent	 and	non-cache-coherent	 systems
– Even	though	there	aren’t	many	non-cache-coherent	 systems,	 it	is	designed	

with	the	future	in	mind

§ There	even	exists	a	formal	model	for	MPI-3	RMA	that	can	be	used	by	tools	
and	compilers	 for	optimization,	verification,	 etc.
– See	“Remote	 Memory	Access	Programming	 in	MPI-3”	by	Hoefler,	Dinan,	

Thakur,	Barrett,	Balaji,	Gropp,	Underwood.	ACM	TOPC,	July	2015.

– http://htor.inf.ethz.ch/publications/index.php?pub=201
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What we need to know in MPI RMA

§ How	to	create	remote	accessible	memory?

§ Reading,	Writing	and	Updating	remote	memory

§ Data	Synchronization

§ Memory	Model
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Creating Public Memory

§ Any	memory	used	by	a	process	is,	by	default,	only	locally	
accessible
– X	=	malloc(100);

§ Once	the	memory	is	allocated,	the	user	has	to	make	an	
explicit	MPI	call	to	declare	a	memory	region	as	remotely	
accessible
– MPI	terminology	for	remotely	accessible	memory	is	a	“window”

– A	group	of	processes	 collectively	create	 a	“window”

§ Once	a	memory	region	is	declared	as	remotely	accessible,	all	
processes	in	the	window	can	read/write	data	to	this	memory	
without	explicitly	synchronizing	with	the	target	process

51Advanced	MPI,	SC16	(11/14/2016)

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory
Private
Memory

Private
Memory

Private
Memory

Private
Memory

window window window window



Window creation models

§ Four	models	exist
– MPI_WIN_ALLOCATE

• You	want	to	create	a	buffer	and	directly	make	it	remotely	 accessible

– MPI_WIN_CREATE

• You	already	have	an	allocated	 buffer	that	you	would	 like	to	make	
remotely	accessible

– MPI_WIN_CREATE_DYNAMIC

• You	don’t	have	a	buffer	yet,	but	will	have	one	 in	the	future

• You	may	want	to	dynamically	add/remove	 buffers	to/from	the	window

– MPI_WIN_ALLOCATE_SHARED
• You	want	multiple	 processes	 on	the	same	node	share	a	buffer
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MPI_WIN_ALLOCATE

§ Create	a	remotely	accessible	memory	region	in	an	RMA	window
– Only	data	exposed	 in	a	window	can	be	accessed	with	RMA	ops.

§ Arguments:
– size - size	of	local	data	in	bytes	(nonnegative	 integer)

– disp_unit - local	unit	size	for	displacements,	 in	bytes	(positive	 integer)

– info - info	argument	 (handle)

– comm - communicator	 (handle)

– baseptr - pointer	 to	exposed	 local	data

– win												- window	(handle)
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MPI_Win_allocate(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr,
MPI_Win *win)



Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */
MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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MPI_WIN_CREATE

§ Expose	a	region	of	memory	in	an	RMA	window
– Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops.

§ Arguments:
– base - pointer	to	local	data	to	expose
– size - size	of	local	data	in	bytes	(nonnegative	integer)
– disp_unit - local	unit	size	for	displacements,	in	bytes	(positive	integer)
– info - info	argument	(handle)
– comm - communicator	(handle)
– win													- window	(handle)
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MPI_Win_create(void *base, MPI_Aint size, 
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)



Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */
MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);
/* use private memory like you normally would */
a[0] = 1;  a[1] = 2;

/* collectively declare memory as remotely accessible */
MPI_Win_create(a, 1000*sizeof(int), sizeof(int), 

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);
MPI_Free_mem(a);
MPI_Finalize(); return 0;

}

56Advanced	MPI,	SC16	(11/14/2016)



MPI_WIN_CREATE_DYNAMIC

§ Create	an	RMA	window,	to	which	data	can	later	be	attached
– Only	data	exposed	 in	a	window	can	be	accessed	with	RMA	ops

§ Initially	“empty”
– Application	can	dynamically	attach/detach	memory	to	this	window	by	

calling	MPI_Win_attach/detach
– Application	can	access	data	on	this	window	only	after	a	memory	

region	has	been	attached

§ Window	origin	is	MPI_BOTTOM
– Displacements	 are	segment	 addresses	 relative	 to	MPI_BOTTOM
– Must	tell	others	 the	displacement	 after	calling	attach
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MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,
MPI_Win *win)



Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */
a = (int *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
a[0] = 1;  a[1] = 2;

/* locally declare memory as remotely accessible */
MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */
MPI_Win_detach(win, a);  free(a);
MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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Data movement

§ MPI	provides	ability	to	read,	write	and	atomically	modify	data	
in	remotely	accessible	memory	regions
– MPI_PUT

– MPI_GET

– MPI_ACCUMULATE	 (atomic)

– MPI_GET_ACCUMULATE	 (atomic)

– MPI_COMPARE_AND_SWAP	 (atomic)

– MPI_FETCH_AND_OP (atomic)
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Data movement: Put

§ Move	data	from origin,	to target

§ Separate	data	description	triples	for	origin and	target

60

Origin

MPI_Put(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)
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Data movement: Get

§ Move	data	to origin,	from target

§ Separate	data	description	triples	for	origin and	target

61

Origin

MPI_Get(const void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)
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Atomic Data Aggregation: Accumulate

§ Atomic	update	operation,	 similar	to	a	put
– Reduces	origin	and	target	data	into	 target	buffer	 using	op	argument	as	combiner

– Op	=	MPI_SUM,	MPI_PROD,	MPI_OR,	MPI_REPLACE,	MPI_NO_OP,	…

– Predefined	 ops	only,	no	user-defined	 operations

§ Different	 data	layouts	between
target/origin	 OK
– Basic	type	elements	must	match

§ Op	=	MPI_REPLACE
– Implements	 f(a,b)=b

– Atomic	PUT
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MPI_Accumulate(const void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)
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Atomic Data Aggregation: Get Accumulate

§ Atomic	read-modify-write
– Op	=	MPI_SUM,	MPI_PROD,	MPI_OR,	MPI_REPLACE,	MPI_NO_OP,	…
– Predefined	ops	only

§ Result	stored	in	target	buffer
§ Original	data	stored	in	result	buf
§ Different	data	layouts	between

target/origin	OK
– Basic	type	elements	must	match

§ Atomic	get	with	MPI_NO_OP
§ Atomic	swap	with	MPI_REPLACE
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MPI_Get_accumulate(const void *origin_addr,
int origin_count, MPI_Datatype origin_dtype, 
void *result_addr,int result_count,
MPI_Datatype result_dtype, int target_rank, 
MPI_Aint target_disp,int target_count, 
MPI_Datatype target_dype, MPI_Op op, MPI_Win win)
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Atomic Data Aggregation: CAS and FOP

§ FOP:	Simpler	version	of	MPI_Get_accumulate
– All	buffers	 share	a	single	predefined	 datatype

– No	count	argument	 (it’s	always	1)

– Simpler	interface	 allows	hardware	 optimization

§ CAS:	Atomic	swap	if	target	value	is	equal	to	compare	value
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MPI_Compare_and_swap(void *origin_addr, void *compare_addr,
void *result_addr, MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(void *origin_addr, void *result_addr,
MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Op op, MPI_Win win)
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Ordering of Operations in MPI RMA

§ No	guaranteed	ordering	for	Put/Get	operations
§ Result	of	concurrent	Puts	to	the	same	locationundefined
§ Result	of	Get	concurrent	Put/Accumulate	undefined

– Can	be	garbage	in	both	cases

§ Result	of	concurrent	accumulate	operations	to	the	same	location	
are	defined	according	to	the	order	in	which	the	occurred
– Atomic	put:	Accumulate	with	op	=	MPI_REPLACE
– Atomic	get:	Get_accumulate with	op	=	MPI_NO_OP

§ Accumulate	operations	from	a	given	process	are	ordered	by	default
– User	can	tell	the	MPI	implementation	that	(s)he	does	not	require	ordering	

as	optimization	hint
– You	can	ask	for	only	the	needed	orderings:	RAW	(read-after-write),	WAR,	

RAR,	or	WAW
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Examples with operation ordering

66

Process	0 Process	1

GET_ACC	 (y,	x+=2,	P1)

ACC	(x+=1,	 P1) x +=	2

x	+=	1y=2	

x	=	2

PUT(x=2,	 P1)

GET(y,	x,	P1)

x	=	2y=1

x	=	1

PUT(x=1,	 P1)

PUT(x=2,	 P1)

x	=	1

x	=	0

x	=	2
1.	Concurrent	Puts:	undefined

2.	Concurrent	Get	and	
Put/Accumulates:	 undefined

3.	Concurrent	Accumulate	 operations	
to	the	same	 location	:	 ordering	is	
guaranteed

Advanced	MPI,	SC16	(11/14/2016)



RMA Synchronization Models

§ RMA	data	access	model
– When	is	a	process	allowed	to	read/write	remotely	accessible	memory?
– When	is	data	written	by	process	X	is	available	for	process	Y	to	read?
– RMA	synchronization	models	define	these semantics

§ Three	synchronization	models	provided	by	MPI:
– Fence	(active	target)
– Post-start-complete-wait	(generalized	active	target)
– Lock/Unlock	(passive	target)

§ Data	accesses	occur	within	“epochs”
– Access	epochs:	contain	a	set	of	operations	issued	by	an	origin	process
– Exposure	epochs:	 enable	remote	processes	to	update	a	target’s	window
– Epochs	define	ordering	and	completion	semantics
– Synchronization	models	provide	mechanisms	for	establishing	epochs

• E.g.,	starting,	ending,	 and	synchronizing	 epochs
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Fence: Active Target Synchronization

§ Collective	 synchronization	model

§ Starts	and ends	access	and	exposure	
epochs	on	all	processes	 in	the	window

§ All	processes	 in	group	of	“win”	do	an	
MPI_WIN_FENCE	 to	open	an	epoch

§ Everyone	 can	issue	PUT/GET	 operations	
to	read/write	 data

§ Everyone	 does	an	MPI_WIN_FENCE	 to	
close	the	epoch

§ All	operations	 complete	at	the	second	
fence	synchronization
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Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)
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Implementing Stencil Computation with RMA Fence
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Origin	buffers

Target	buffers

RMA	window

PUT

PU
T

PUT

PU
T
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70

Code Example

§ stencil_mpi_ddt_rma.c

§ Use	MPI_PUTs	to	move	data,	explicit	receives	are	not	needed

§ Data	location	specified	by	MPI	datatypes

§ Manual	packing	of	data	no	longer	required
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PSCW: Generalized Active Target Synchronization

§ Like	FENCE,	but	origin	and	target	 specify	
who	they	communicate	with

§ Target:	Exposure	epoch
– Opened	with	MPI_Win_post

– Closed	 by	MPI_Win_wait

§ Origin:	Access	epoch

– Opened	by	MPI_Win_start

– Closed	 by	MPI_Win_complete

§ All	synchronization	 operations	may	block,	
to	enforce	 P-S/C-W	ordering
– Processes	 can	be	both	origins	and	targets

71

Start

Complete

Post

Wait

Target Origin

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)
MPI_Win_complete/wait(MPI_Win win)
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Lock/Unlock: Passive Target Synchronization

§ Passive	mode:	One-sided,	 asynchronous communication

– Target	does	not	participate	 in	communication	operation

§ Shared	memory-like	model

72

Active	Target	Mode Passive	Target	Mode

Lock

Unlock

Start

Complete

Post

Wait
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Passive Target Synchronization

§ Lock/Unlock:	Begin/end	 passive	mode	epoch
– Target	process	does	not	make	a	corresponding	MPI	call
– Can	initiate	 multiple	 passive	target	epochs	to	different	 processes
– Concurrent	epochs	to	same	process	not	allowed	 (affects	threads)

§ Lock	type
– SHARED:	Other	processes	 using	shared	can	access	concurrently
– EXCLUSIVE:	No	other	processes	 can	access	 concurrently

§ Flush:	Remotely	complete	RMA	operations	 to	the	target	process
– After	completion,	 data	can	be	read	by	target	process	or	a	different	 process

§ Flush_local:	Locally	complete	RMA	operations	 to	the	target	process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)
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MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)



Advanced Passive Target Synchronization

§ Lock_all:	Shared	lock,	passive	target	epoch	to	all	other	
processes
– Expected	 usage	is	long-lived:	 lock_all,	put/get,	 flush,	…,	unlock_all

§ Flush_all – remotely	complete	RMA	operations	to	all	
processes

§ Flush_local_all – locally	complete	RMA	operations	to	all	
processes
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MPI_Win_lock_all(int assert, MPI_Win win)
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MPI_Win_unlock_all(MPI_Win win)
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NWChem [1]

§ High	performance	computational	chemistry	
application	suite

§ Quantum	level	simulation	of	molecular	
systems
– Very	expensive	 in	computation	and	data	

movement,	 so	is	used	for	small	systems
– Larger	 systems	use	molecular	level	 simulations

§ Composed	of	many	simulation	capabilities
– Molecular	Electronic	Structure
– Quantum	Mechanics/Molecular	 Mechanics
– Pseudo	potential	Plane-Wave	 Electronic	Structure
– Molecular	Dynamics

§ Very	large	code	base
– 4M	LOC;	Total	investment	 of	~200M	$	to	date

[1]	M.	Valiev,	E.J.	Bylaska,	N.	Govind,	K.	Kowalski,	T.P.	Straatsma,	H.J.J.	van	Dam,	D.	Wang,	J.	Nieplocha,	E.	Apra,	T.L.	Windus,	W.A.	de	Jong,	
"NWChem:	a	comprehensive	and	scalable	open-source	solution	for	large	scale	molecular	simulations"	Comput.	Phys.	Commun.	181,	
1477	(2010)

Water	 (H2O)21

Carbon	C20
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NWChem Communication Runtime

ARMCI		:	Communication	 interface	for	RMA[3]

Global	Arrays	[2]

[2]	http://hpc.pnl.gov/globalarrays
[3]	http://hpc.pnl.gov/armci

ARMCI	native	ports

IB DMMAP …

MPI RMA

ARMCI-MPI

Abstractions	for	distributed	arrays
Global	Address	Space

Physically	distributed	to	different	processes	

Hidden	from	user

Applications

Irregularly		access	large	amount	of	remote	
memory	regions
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Get-Compute-Update

§ Typical	Get-Compute-Update	mode	in	GA	programming

Perform	DGEMM	in	local	buffer	

for i in I blocks:
for j in J blocks:

for k in K blocks:
GET block a from A
GET block b from B
c += a * b   /*computing*/

end do 
ACC block c to C
NXTASK

end do
end do

Pseudo	code

ACCUMULATE
block	c

GET
block	b

GET	
block	a

All	of	the	blocks	are	non-contiguous	data

Mock	figure	showing	2D	DGEMM	with	block-sparse	
computations.		In	reality,	NWChem uses	6D	tensors.
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Code Example

§ ga_mpi_ddt_rma.c

§ Only	synchronization	from	origin	processes,	no	
synchronization	from	target	processes
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Which synchronization mode should I use, when?

§ RMA	communication	has	low	overheads	versus	send/recv
– Two-sided:	Matching,	queuing,	buffering,	unexpected	receives,	etc…
– One-sided:	No	matching,	no	buffering,	always	ready	to	receive
– Utilize	RDMA	provided	by	high-speed	interconnects	(e.g.	InfiniBand)

§ Active	mode:	bulk	synchronization
– E.g.	ghost	cell	exchange

§ Passive	mode:	asynchronous	data	movement
– Useful	when	dataset	is	large,	requiring	memory	of	multiple	nodes
– Also,	when	data	access	and	synchronization	pattern	is	dynamic
– Common	use	case:	distributed,	shared	arrays

§ Passive	target	locking	mode
– Lock/unlock	– Useful	when	exclusive	epochs	are	needed
– Lock_all/unlock_all – Useful	when	only	shared	epochs	are	needed

79Advanced	MPI,	SC16	(11/14/2016)



MPI RMA Memory Model

§ MPI-3	provides	two	memory	models:	
separate	and	unified

§ MPI-2:	Separate	Model
– Logical	public	and	private	copies
– MPI	provides	software	coherence	between	

window	copies
– Extremely	portable,	to	systems	that	don’t	

provide	hardware	coherence

§ MPI-3:	New	Unified	Model
– Single	copy	of	the	window
– System	must	provide	coherence
– Superset	of	separate	semantics

• E.g.	allows	concurrent	 local/remote	access

– Provides	access	to	full	performance	
potential	of	hardware

80

Public
Copy

Private
Copy

Unified
Copy
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MPI RMA Memory Model (separate windows)

§ Very	portable,	compatible	with	non-coherent	memory	systems
§ Limits	concurrent	accesses	to	enable	software	coherence

Public
Copy

Private
Copy

Same	source
Same	epoch Diff.	Sources

load store store

X
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X
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MPI RMA Memory Model (unified windows)

§ Allows	concurrent	local/remote	accesses
§ Concurrent,	conflicting	operations	are	allowed	(not	invalid)

– Outcome	is	not	defined	by	MPI	(defined	by	the	hardware)

§ Can	enable	better	performance	by	reducing	synchronization
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Unified
Copy

Same	source
Same	epoch Diff.	Sources

load store store

X
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MPI RMA Operation Compatibility (Separate)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL X X

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOVL

This	matrix	shows	the	compatibility	 of	MPI-RMA	operations	when	two	or	more	
processes	 access	 a	window	at	the	same	 target	concurrently.

OVL	 – Overlapping	operations	permitted
NOVL	 – Nonoverlapping operations	permitted
X	 – Combining	 these	operations	 is	OK,	but	data	might	be	garbage
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MPI RMA Operation Compatibility (Unified)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL NOVL OVL+NOVL

This	matrix	shows	the	compatibility	 of	MPI-RMA	operations	when	two	or	more	
processes	 access	 a	window	at	the	same	 target	concurrently.

OVL	 – Overlapping	operations	permitted
NOVL	 – Nonoverlapping operations	permitted
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Hybrid Programming with Threads, 
Shared Memory, and GPUs



Why Hybrid MPI + X Programming?

Core

Core Core

Core Core

Core Core

Core

Core

Core Core

Core Core

Core Core

Core

Growth	of	node	resources	in	the	Top500	systems.	Peter	Kogge:	“Reading	the	
Tea-Leaves:	How	Architecture	Has	Evolved	at	the	High	End”.	IPDPS	2014	Keynote

Domain	
Decomposition

§ Sharing	promotes	cooperation
– Reduced	memory	consumption

– Efficient	use	of	shared	 resources:	
caches,	TLB	entries,	 network	
endpoints,	 etc.
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MPI + Threads
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MPI and Threads

§ MPI	describes	parallelism	between	
processes	(with	separate	address	spaces)

§ Thread parallelism	provides	a	shared-
memory	model	within	a	process

§ OpenMP and	Pthreads are	common	models
– OpenMP provides	convenient	 features	 for	loop-

level	parallelism.	Threads	 are	created	 and	
managed	by	the	compiler,	based	on	user	
directives.

– Pthreads provide	more	complex	and	dynamic	
approaches.	 Threads	 are	created	 and	managed	
explicitly	by	the	user.
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Hybrid Programming with MPI+Threads

§ In	MPI-only	programming,	
each	MPI	process	has	a	single	
thread	of	execution

§ In	MPI+threads hybrid	
programming,	there	can	be	
multiple	threads	executing	
simultaneously
– All	threads	 share	all	MPI	

objects	 (communicators,	
requests)

– The	MPI	implementation	might	
need	 to	take	precautions	 to	
make	sure	the	state	of	the	MPI	
stack	is	consistent

Advanced	MPI,	SC16	(11/14/2016)

Rank	0 Rank	1

MPI-only	Programming

Rank	0 Rank	1

MPI+Threads Hybrid	Programming
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MPI’s Four Levels of Thread Safety

§ MPI	defines	four	levels	of	thread	safety	-- these	are	
commitments	the	application	makes	to	the	MPI
– MPI_THREAD_SINGLE:	 only	one	thread	exists	in	the	application
– MPI_THREAD_FUNNELED:	 multithreaded,	 but	only	the	main	thread	

makes	MPI	calls	(the	one	that	called	MPI_Init_thread)
– MPI_THREAD_SERIALIZED:	 multithreaded,	 but	only	one	thread	at	a	time

makes	MPI	calls

– MPI_THREAD_MULTIPLE:	 multithreaded	 and	any	thread	can	make	MPI	
calls	at	any	time	(with	some	restrictions	 to	avoid	races	– see	next	 slide)

§ Thread	levels	are	in	increasing	order
– If	an	application	works	in	FUNNELED	mode,	 it	can	work	in	SERIALIZED

§ MPI	defines	an	alternative	to	MPI_Init
– MPI_Init_thread(requested,	 provided)

• Application	 specifies	level	it	needs;	MPI	implementation	 returns	 level	it	supports
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MPI_THREAD_SINGLE

§ There	are	no	additional	user	threads	in	the	system
– E.g.,	there	are	no	OpenMP parallel	regions
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int main(int argc, char ** argv)
{

int buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (i = 0; i < 100; i++)
compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();

return 0;
}
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MPI_THREAD_FUNNELED

§ All	MPI	calls	are	made	by	the	master thread
– Outside	 the	OpenMP parallel	 regions

– In	OpenMP master	 regions
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int main(int argc, char ** argv)
{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);
if (provided < MPI_THREAD_FUNNELED) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for
for (i = 0; i < 100; i++)

compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();
return 0;

}
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MPI_THREAD_SERIALIZED

§ Only	one thread	can	make	MPI	calls	at	a	time
– Protected	 by	OpenMP critical	regions
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int main(int argc, char ** argv)
{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided);
if (provided < MPI_THREAD_SERIALIZED) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for
for (i = 0; i < 100; i++) {

compute(buf[i]);
#pragma omp critical

/* Do MPI stuff */
}

MPI_Finalize();
return 0;

}
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MPI_THREAD_MULTIPLE

§ Any thread	can	make	MPI	calls	any	time	(restrictions	apply)
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int main(int argc, char ** argv)
{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
if (provided < MPI_THREAD_MULTIPLE) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for
for (i = 0; i < 100; i++) {

compute(buf[i]);
/* Do MPI stuff */

}

MPI_Finalize();
return 0;

}
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Threads and MPI

§ An	implementation	is	not	required	to	support	levels	higher	
than	MPI_THREAD_SINGLE;	that	is,	an	implementation	is	not	
required	to	be	thread	safe

§ A	fully	thread-safe	implementation	will	support	
MPI_THREAD_MULTIPLE

§ A	program	that	calls	MPI_Init (instead	of	MPI_Init_thread)	
should	assume	that	only	MPI_THREAD_SINGLE	is	supported
– MPI	Standard	mandates MPI_THREAD_SINGLE	 for	MPI_Init

§ A	threaded	MPI	program	that	does	not	call	MPI_Init_thread is	
an	incorrect	program	(common	user	error	we	see)
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Implementing Stencil Computation using 
MPI_THREAD_FUNNELED
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Code Examples

§ stencil_mpi_ddt_funneled.c

§ Parallelize	computation	(OpenMPparallel	for)

§ Main	thread	does	all	communication
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MPI Semantics and MPI_THREAD_MULTIPLE

§ Ordering:When	multiple	threads	make	MPI	calls	concurrently,	
the	outcome	will	be	as	if	the	calls	executed	sequentially	in	some	
(any)	order
– Ordering	 is	maintained	within	each	thread
– User	must	ensure	 that	collective	 operations	on	the	same	communicator,	

window,	or	file	handle	are	correctly	ordered	 among	threads
• E.g.,	cannot	call	a	broadcast	on	one	thread	and	a	reduce	on	another	thread	on	
the	same	communicator

– It	is	the	user's	responsibility	 to	prevent	 races	when	threads	 in	the	same	
application	post	conflicting	MPI	calls	

• E.g.,	accessing	 an	info	object	from	one	thread	and	freeing	 it	from	another	
thread

§ Progress: Blocking	MPI	calls	will	block	only	the	calling	thread	and	
will	not	prevent	other	threads	from	running	or	executing	MPI	
functions
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with Collectives

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with Collectives

§ P0	and	P1	can	have	different	orderings	of	Bcast and	Barrier
§ Here	the	user	must	use	some	kind	of	synchronization	to	

ensure	that	either	thread	1	or	thread	2	gets	scheduled	first	on	
both	processes	

§ Otherwise	a	broadcast	may	get	matched	with	a	barrier	on	the	
same	communicator,	which	is	not	allowed	in	MPI

Process 0
Thread 1                        Thread 2

MPI_Bcast(comm)

MPI_Barrier(comm)
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with RMA
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int main(int argc, char ** argv)
{

/* Initialize MPI and RMA window */

#pragma omp parallel for
for (i = 0; i < 100; i++) {

target = rand();
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, target, 0, win);
MPI_Put(..., win);
MPI_Win_unlock(target, win);

}

/* Free MPI and RMA window */

return 0;
}

Different	threads	can	lock	the	same	process	causing	multiple	
locks	to	the	same	target	before	the	first	lock	is	unlocked



Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with Object Management

§ The	user	has	to	make	sure	that	one	thread	is	not	using	an	
object	while	another	thread	is	freeing	it
– This	is	essentially	an	ordering	 issue;	the	object	might	get	freed	 before	

it	is	used
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Blocking Calls in MPI_THREAD_MULTIPLE: Correct 
Example

§ An	implementation	must	ensure	that	the	above	example	
never	deadlocks	for	any	ordering	of	thread	execution

§ That	means	the	implementation	cannot	simply	acquire	a	
thread	lock	and	block	within	an	MPI	function.	It	must	
release	the	lock	to	allow	other	threads	to	make	progress.

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2
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Implementing Stencil Computation using 
MPI_THREAD_MULTIPLE
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Code Examples

§ stencil_mpi_ddt_multiple.c

§ Divide	the	process	memory	among	OpenMP threads

§ Each	thread	responsible	for	communication	and	computation
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The Current Situation

§ All	MPI	implementations	support	MPI_THREAD_SINGLE

§ They	probably	support	MPI_THREAD_FUNNELED	even	if	they	
don’t	admit	it.
– Does	require	 thread-safety	 for	some	system	routines	 (e.g.	malloc)

– On	most	systems	 -pthread will	guarantee	 it	(OpenMP implies

-pthread )

§ Many	(but	not	all)	implementations	support	THREAD_MULTIPLE
– Hard	to	implement	efficiently	 though	(thread	synchronization	 issues)

§ Bulk-synchronous	OpenMPprograms	(loops	parallelized	with	
OpenMP,	communication	between	loops)	only	need	FUNNELED
– So	don’t	need	“thread-safe”	 MPI	for	many	hybrid	programs

– But	watch	out	for	Amdahl’s	 Law!

Advanced	MPI,	SC16	(11/14/2016) 106



Performance with MPI_THREAD_MULTIPLE

§ Thread	safety	does	not	come	for	free

§ The	implementation	must	access/modify	several	shared	
objects	(e.g.	message	queues)	in	a	consistent	manner

§ To	measure	the	performance	impact,	we	ran	tests	to	measure	
communication	performance	when	using	multiple	threads	
versus	multiple	processes
– For	results,	 see	Thakur/Gropp paper:	“Test	Suite	for	Evaluating	

Performance	 of	Multithreaded	 MPI	Communication,”	 Parallel	
Computing,	2009
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Message Rate Results on BG/P 

Message	 Rate	Benchmark
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“Enabling	Concurrent	Multithreaded	MPI	
Communication	on	Multicore Petascale
Systems”	EuroMPI 2010



Why is it hard to optimize MPI_THREAD_MULTIPLE

§ MPI	internally	maintains	several	resources

§ Because	of	MPI	semantics,	it	is	required	that	all	
threads	have	access	to	some	of	the	data	structures
– E.g.,	thread	1	can	post	an	Irecv,	and	thread	2	can	wait	
for	its	completion	– thus	the	request	queue	has	to	be	
shared	between	both	threads

– Since	multiple	threads	are	accessing	this	shared	queue,	
thread-safety	is	required	to	ensure	a	consistent	state	of	
the	queue	– adds	a	lot	of	overhead
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Hybrid Programming: Correctness Requirements

§ Hybrid	programming	with	MPI+threads does	not	do	much	to	
reduce	the	complexity	of	thread	programming
– Your	application	still	has	to	be	a	correct	multi-threaded	 application

– On	top	of	that,	you	also	need	 to	make	sure	you	are	correctly	 following	
MPI	semantics

§ Many	commercial	debuggers	offer	support	for	debugging	
hybrid	MPI+threads applications	(mostly	for	MPI+Pthreads
and	MPI+OpenMP)
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An Example we encountered

§ We	received	a	bug	report	about	a	very	simple	
multithreaded	MPI	program	that	hangs

§ Run	with	2	processes

§ Each	process	has	2	threads

§ Both	threads	communicate	with	threads	on	the	other	
process	as	shown	in	the	next	slide

§ We	spent	several	hours	trying	to	debug	MPICH	before	
discovering	that	the	bug	is	actually	in	the	user’s	program	L
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2 Proceses, 2 Threads, Each Thread Executes this 
Code

for	(j	=	0;	j	<	2;	j++)	{

if	(rank	==	1)	{

for	(i	=	0;	i	<	2;	i++)

MPI_Send(NULL,	 0,	MPI_CHAR,	0,	0,	MPI_COMM_WORLD);

for	(i	=	0;	i	<	2;	i++)

MPI_Recv(NULL,	 0,	MPI_CHAR,	0,	0,	MPI_COMM_WORLD,	&stat);

}

else	{		/*	rank	==	0	*/

for	(i	=	0;	i	<	2;	i++)

MPI_Recv(NULL,	 0,	MPI_CHAR,	1,	0,	MPI_COMM_WORLD,	&stat);

for	(i	=	0;	i	<	2;	i++)

MPI_Send(NULL,	 0,	MPI_CHAR,	1,	0,	MPI_COMM_WORLD);

}

}
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Intended Ordering of Operations

§ Every	send	matches	a	receive	on	the	other	rank

Advanced	MPI,	SC16	(11/14/2016)

2	recvs (T2)
2 sends	(T2)
2 recvs (T2)
2 sends	(T2)

2	recvs (T1)
2 sends	(T1)
2 recvs (T1)
2 sends	(T1)

Rank	0

2	sends	(T2)
2	recvs (T2)
2	sends	(T2)
2	recvs (T2)

2	sends	(T1)
2	recvs (T1)
2	sends	(T1)
2	recvs (T1)

Rank	1
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Possible Ordering of Operations in Practice

§ Because	the	MPI	operations	can	be	issued	in	an	arbitrary	
order	across	threads,	all	threads	could	block	in	a	RECV	call

1 recv (T2)

1	recv (T2)

2	sends	(T2)
2 recvs (T2)
2 sends	(T2)

2	recvs (T1)
2 sends	(T1)
1 recv (T1)

1	recv (T1)

2	sends	(T1)

Rank	0

2	sends	(T2)
1 recv (T2)

1	recv (T2)

2	sends	(T2)
2	recvs (T2)

2	sends	(T1)
1 recv (T1)

1	recv (T1)

2	sends	(T1)
2	recvs (T1)

Rank	1
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Some Things to Watch for in OpenMP

§ Limited	thread	and	no	explicit	memory	affinity	control	(but	
see	OpenMP	4.0	and	the	4.1	Draft)
– “First	touch”	(have	 intended	“owning”	thread	perform	 first	access)	

provides	 initial	static	mapping	of	memory
• Next	touch	(move	ownership	to	most	recent	thread)	could	help

– No	portable	way	to	reassign	memory	affinity	– reduces	 the	
effectiveness	 of	OpenMP	when	used	to	improve	 load	balancing.

§ Memory	model	can	require	explicit	“memory	flush”	
operations
– Defaults	allow	race	conditions

– Humans	notoriously	poor	at	recognizing	 all	races
• It	only	takes	one	mistake	to	create	a	hard-to-find	bug
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Some Things to Watch for in MPI + OpenMP

§ No	interface	for	apportioning	resources	between	MPI	and	
OpenMP
– On	an	SMP	node,	how	many	MPI	processes	 and	how	many	OpenMP	

Threads?
• Note	the	static	nature	assumed	 by	this	question

– Note	that	having	more	threads	 than	cores	can	be	important	 for	hiding	
latency
• Requires	 very	lightweight	 threads

§ Competition	for	resources
– Particularly	memory	bandwidth	and	network	access

– Apportionment	 of	network	access	between	 threads	 and	processes	 is	
also	a	problem,	as	we’ve	 already	seen.
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Where Does the MPI + OpenMP Hybrid Model Work 
Well?

§ Compute-bound	loops
– Many	operations	 per	memory	load

§ Fine-grain	parallelism
– Algorithms	 that	are	latency-sensitive

§ Load	balancing
– Similar	to	fine-grain	parallelism;	ease	of	

§ Memory	bound	loops
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Compute-Bound Loops

§ Loops	that	involve	many	operations	per	load	from	memory	
– This	can	happen	 in	some	kinds	of	matrix	assembly,	 for	example.

– Jacobi	update	not	compute	bound
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Fine-Grain Parallelism

§ Algorithms	that	require	frequent	exchanges	of	small	amounts	
of	data

§ E.g.,	in	blocked	preconditioners,	where	fewer,	larger	blocks,	
each	managed	with	OpenMP,	as	opposed	to	more,	smaller,	
single-threaded	blocks	in	the	all-MPI	version,	gives	you	an	
algorithmic	advantage	(e.g.,	fewer	iterations	in	a	
preconditioned	linear	solution	algorithm).

§ Even	if	memory	bound
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Load Balancing

§ Where	the	computational	load	isn't	exactly	the	same	in	all	
threads/processes;	this	can	be	viewed	as	a	variation	on	fine-
grained	access.

§ OpenMP	schedules	can	handle	some	of	this
– For	very	 fine	grain	cases,	a	mix	of	static	and	dynamic	scheduling	may	

be	more	efficient

– Current	 research	 looking	at	more	elaborate	and	efficient	 schedules	 for	
this	case
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Memory-Bound Loops

§ Where	read	data	is	shared,	so	that	cache	memory	can	be	
used	more	efficiently.

§ Example:	Table	lookup	for	evaluating	equations	of	state
– Table	can	be	shared

– If	table	evaluated	 as	necessary,	 evaluations	 can	be	shared	 			
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Where is Pure MPI Better?

§ Trying	to	use	OpenMP	+	MPI	on	very	regular,	memory-
bandwidth-bound	computations	is	likely	to	lose	because	of	
the	better,	programmer-enforced	memory	locality	
management	in	the	pure	MPI	version.

§ Another	reason	to	use	more	than	one	MPI	process	- if	a	single	
process	(or	thread)	can't	saturate	the	interconnect	- then	use	
multiple	communicating	processes	or	threads.
– Note	that	threads	 and	processes	 are	not	equal
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MPI + Shared-Memory
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Hybrid Programming with Shared Memory

§ MPI-3	allows	different	processes	to	allocate	shared	memory	
through	MPI
– MPI_Win_allocate_shared

§ Uses	many	of	the	concepts	of	one-sided	communication

§ Applications	can	do	hybrid	programming	using	MPI	or	
load/store	accesses	on	the	shared	memory	window

§ Other	MPI	functions	can	be	used	to	synchronize	access	to	
shared	memory	regions

§ Can	be	simpler	to	program	than	threads
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Creating Shared Memory Regions in MPI
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MPI_COMM_WORLD

MPI_Comm_split_type (MPI_COMM_TYPE_SHARED)

Shared	memory	
communicator

MPI_Win_allocate_shared

Shared	memory	
window

Shared	memory	
window

Shared	memory	
window

Shared	memory	
communicator

Shared	memory	
communicator
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Load/store

Regular RMA windows vs. Shared memory windows

§ Shared	memory	windows	allow	
application	processes	 to	directly	
perform	 load/store	accesses	 on	
all	of	the	window	memory
– E.g.,	x[100]	=	10

§ All	of	the	existing	RMA	functions	
can	also	be	used	on	such	
memory	for	more	advanced	
semantics	 such	as	atomic	
operations

§ Can	be	very	useful	when	
processes	 want	to	use	threads	
only	to	get	access	 to	all	of	the	
memory	on	the	node
– You	can	create	 a	shared	memory	

window	and	put	your	shared	data
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Local	
memory

P0

Local	
memory

P1

Load/store
PUT/GET

Traditional	RMA	windows

Load/store

Local	memory

P0 P1

Load/store

Shared	memory	windows

Load/store

126



MPI_COMM_SPLIT_TYPE

§ Create	a	communicator	where	processes	“share	a	property”
– Properties	 are	defined	by	the	“split_type”

§ Arguments:
– comm - input	communicator	 (handle)

– Split_type - property	of	the	partitioning	 (integer)

– Key - Rank	assignment	ordering	 (nonnegative	 integer)

– info - info	argument	 (handle)

– newcomm- output	communicator	 (handle)
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MPI_Comm_split_type(MPI_Comm comm, int split_type,
int key, MPI_Info info, MPI_Comm *newcomm)



MPI_WIN_ALLOCATE_SHARED

§ Create	a	remotely	accessible	memory	region	in	an	RMA	window
– Data	exposed	 in	a	window	can	be	accessed	with	RMA	ops	or	load/store

§ Arguments:
– size - size	of	local	data	in	bytes	(nonnegative	 integer)

– disp_unit - local	unit	size	for	displacements,	 in	bytes	(positive	 integer)

– info - info	argument	 (handle)

– comm - communicator	 (handle)

– baseptr - pointer	 to	exposed	 local	data

– win												- window	(handle)
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MPI_Win_allocate_shared(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr,
MPI_Win *win)



Shared Arrays with Shared memory windows

Advanced	MPI,	SC16	(11/14/2016)

int main(int argc, char ** argv)
{

int buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);
MPI_Win_allocate_shared(comm, ..., &win);

MPI_Win_lockall(win);

/* copy data to local part of shared memory */
MPI_Win_sync(win);

/* use shared memory */

MPI_Win_unlock_all(win);

MPI_Win_free(&win);
MPI_Finalize();
return 0;

}
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Memory allocation and placement

§ Shared	memory	allocation	does	not	need	to	be	uniform	
across	processes
– Processes	 can	allocate	a	different	 amount	of	memory	(even	zero)

§ The	MPI	standard	does	not	specify	where	the	memory	would	
be	placed	(e.g.,	which	physical	memory	it	will	be	pinned	to)
– Implementations	 can	choose	 their	own	strategies,	 though	it	is	

expected	 that	an	implementation	will	try	to	place	shared	memory	
allocated	by	a	process	“close	to	it”

§ The	total	allocated	shared	memory	on	a	communicator	is	
contiguous	by	default
– Users	 can	pass	an	info	hint	called	“noncontig”	that	will	allow	the	MPI	

implementation	 to	align	memory	allocations	 from	each	process	 to	
appropriate	 boundaries	 to	assist	with	placement
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Example Computation: Stencil

Advanced	MPI,	SC16	(11/14/2016)

Message	 passing	model	
requires	ghost-cells	to	be	
explicitly	communicated	
to	neighbor	processes

In	the	shared-memory	
model,	there	is	no	
communication.		

Neighbors	directly	access	
your	data.
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Walkthrough of 2D Stencil Code with Shared 
Memory Windows

§ stencil_mpi_shmem.c
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Which Hybrid Programming Method to Adopt?

§ It	depends	on	the	application,	target	machine,	and	MPI	
implementation

§ When	should	I	use	process	shared	memory?
– The	only	resource	 that	needs	sharing	is	memory

– Few	allocated	objects	need	sharing	(easy	 to	place	them	in	a	public	shared	
region)

§ When	should	I	use	threads?
– More	 than	memory	resources	 need	sharing	(e.g.,	TLB)

– Many	application	objects	 require	sharing

– Application	computation	structure	 can	be	easily	parallelized	with	high-
level	OpenMP loops
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Example: Quantum Monte Carlo

W
Walker	data

§ Memory	capacity	bound	with	MPI-only
§ Hybrid	approaches

– MPI	+	threads	 (e.g.	X	=	OpenMP,	Pthreads)
– MPI	+	shared-memory	 (X		=	MPI)

§ Can	use	direct	load/store	operations	
instead	of	message	passing

Large	B-spline	table

W W W W

Thread	0 Thread	1

MPI	Task	1

Core Core

MPI	+	Threads
• Share	everything	by	default
• Privatize	data	when	necessary

MPI	+	Shared-Memory	(MPI	3.0)
• Everything	private	by	default
• Expose	shared	data	explicitly

MPI	Task	1MPI	Task	0

Large	B-spline	table	in	a	Share-Memory	
Window

W

Core

W

Core

WW
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MPI + Accelerators
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Accelerators in Parallel Computing

§ General	purpose,	highly	parallel	processors
– High	FLOPs/Watt	and	FLOPs/$

– Unit	of	execution	Kernel
– Separate	memory	subsystem
– Programming	Models:	CUDA,	OpenCL,	…

§ Clusters	with	accelerators	are	becoming	common
§ New	programmability	and	performance	challenges	for	

programming	models	and	runtime	systems
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Hybrid Programming with Accelerators

§ Many	users	are	looking	to	use	accelerators	within	their	MPI	
applications

§ The	MPI	standard	does	not	provide	any	special	semantics	to	
interact	with	accelerators
– Current	MPI	threading	semantics	are	considered	 sufficient	 by	most	

users

– There	are	some	research	 efforts	 for	making	accelerator	 memory	
directly	accessibly	by	MPI,	but	those	are	not	a	part	of	the	MPI	standard
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Current Model for MPI+Accelerator Applications
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Alternate MPI+Accelerator models being studied

§ Some	MPI	implementations	(MPICH,	Open	MPI,	MVAPICH)	
are	investigating	how	the	MPI	implementation	can	directly	
send/receive	data	from	accelerators
– Unified	virtual	address	 (UVA)	 space	techniques	where	all	memory	

(including	accelerator	 memory)	is	represented	 with	a	“void	*”

– Communicator	and	datatype attribute	models	where	users	 can	inform	
the	MPI	implementation	of	where	 the	data	resides

§ Clear	performance	advantages	demonstrated	in	research	
papers,	but	these	features	are	not	yet	a	part	of	the	MPI	
standard	(as	of	MPI-3.1)
– Could	be	incorporated	 in	a	future	version	of	the	standard
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Advanced Topics: Nonblocking Collectives, 
Topologies, and Neighborhood Collectives



§ Nonblocking	(send/recv)	communication
– Deadlock	avoidance

– Overlapping	 communication/computation

§ Collective	communication
– Collection	of	pre-defined	 optimized	routines

§ à Nonblocking	collective	communication
– Combines	both	techniques	 (more	than	the	sum	of	the	parts	J)

– System	noise/imbalance	 resiliency

– Semantic	advantages

141Advanced	MPI,	SC16	(11/14/2016)

Nonblocking Collective Communication



Nonblocking Collective Communication

§ Nonblocking	variants	of	all	collectives
– MPI_Ibcast(<bcast args>,	MPI_Request *req);

§ Semantics
– Function	returns	no	matter	what
– No	guaranteed	progress	(quality	of	implementation)
– Usual	completion	calls	(wait,	test)	+	mixing
– Out-of	order	completion

§ Restrictions
– No	tags,	in-order	matching
– Send	and	vector	buffers	may	not	be	updated	during	operation
– MPI_Cancel not	supported
– No	matching	with	blocking	collectives

Hoefler	et	al.:	Implementation	and	Performance	Analysis	of	Non-Blocking	Collective	Operations	for	MPI
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Nonblocking Collective Communication

§ Semantic	advantages
– Enable	asynchronous	progression	 (and	manual)

• Software	pipelining

– Decouple	data	transfer	 and	synchronization

• Noise	 resiliency!

– Allow	overlapping	communicators
• See	also	neighborhood	 collectives

– Multiple	outstanding	operations	 at	any	time
• Enables	 pipelining	window

Hoefler	et	al.:	Implementation	and	Performance	Analysis	of	Non-Blocking	Collective	Operations	for	MPI
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Nonblocking Collectives Overlap

§ Software	pipelining
– More	complex	parameters	

– Progression	 issues

– Not	scale-invariant

Hoefler:	Leveraging	Non-blocking	Collective	Communication	in	High-performance	Applications
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A Non-Blocking Barrier?

§ What	can	that	be	good	for?	Well,	quite	a	bit!

§ Semantics:
– MPI_Ibarrier()	 – calling	process	 entered	 the	barrier,	no

synchronization	 happens

– Synchronization	may happen	asynchronously

– MPI_Test/Wait()	 – synchronization	 happens if	necessary

§ Uses:	
– Overlap	barrier	 latency	(small	benefit)

– Use	 the	split	semantics!	Processes	 notify non-collectively	 but	
synchronize collectively!
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A Semantics Example: DSDE

§ Dynamic	Sparse	Data	Exchange
– Dynamic:	comm.	pattern	varies	across	 iterations
– Sparse:	number	of	neighbors	 is	limited	(O(log	P))
– Data	exchange:	only	senders	 know	neighbors

§ Main	Problem:	metadata
– Determine	who	wants	 to	send	how	much

data	to	me	
(I	must	post	receive	 and	reserve	 memory)
OR:
– Use	MPI	semantics:

• Unknown	sender	(MPI_ANY_SOURCE)
• Unknown	message	 size	(MPI_PROBE)
• Reduces	 problem	to	counting	the	number
of	neighbors	

• Allow	faster	 implementation!
Hoefler	et	al.:	Scalable	Communication	Protocols	for	Dynamic	Sparse	Data	Exchange
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Using Alltoall (PEX) 

§ Based	on	Personalized	Exchange	(											)
– Processes	 exchange

metadata	 (sizes)	
about	neighborhoods	
with	all-to-all

– Processes	 post	
receives	 afterwards

– Most	intuitive	but	
least	performance	
and	scalability!

T.	Hoefler	et	al.:	Scalable	Communication	Protocols	for	Dynamic	Sparse	Data	Exchange
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Reduce_scatter (PCX)

§ Bases	on	Personalized	Census	(													)
– Processes	exchange

metadata	(counts)	about	
neighborhoods	with
reduce_scatter

– Receivers	checks	with
wildcard	MPI_IPROBE
and	receives	messages

– Better	than	PEX	but
non-deterministic!

T.	Hoefler	et	al.:Scalable Communication	Protocols	for	Dynamic	Sparse	Data	Exchange
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MPI_Ibarrier (NBX)

§ Complexity	- census	(barrier):			(																					)
– Combines	metadata	with	actual	transmission
– Point-to-point

synchronization
– Continue	receiving

until	barrier	completes
– Processes	start	coll.

synch.	(barrier)	when
p2p	phase	ended
• barrier	=	distributed	

marker!

– Better	than	Alltoall,
reduce-scatter!

T.	Hoefler	et	al.:	Scalable	Communication	Protocols	for	Dynamic	Sparse	Data	Exchange
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Parallel Breadth First Search

§ On	a	clustered	Erdős-Rényi graph,	weak	scaling
– 6.75	million	edges	per	node	(filled	1	GiB)

§ HW	barrier	support	is	significant	at	large	scale!

BlueGene/P	 – with	HW	barrier! Myrinet 2000	with	LibNBC

T.	Hoefler	et	al.:	Scalable	Communication	Protocols	for	Dynamic	Sparse	Data	Exchange
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Parallel Fast Fourier Transform

§ 1D	FFTs	in	all	three	dimensions
– Assume	1D	decomposition	 (each	process	 holds	a	set	of	planes)

– Best	way:	call	optimized	1D	FFTs	in	parallel	à alltoall

– Red/yellow/green	 are	the	(three)	 different	 processes!

à Alltoall
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A Complex Example: FFT

for(int x=0; x<n/p; ++x) 1d_fft(/* x-th stencil */);

// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

Hoefler:	Leveraging	Non-blocking	Collective	Communication	in	High-performance	Applications
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Parallel Fast Fourier Transform

§ Data	already	transformed	in	y-direction	
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Parallel Fast Fourier Transform

§ Transform	first	y plane	in	z
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Parallel Fast Fourier Transform

§ Start	ialltoall and	transform	second	plane
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Parallel Fast Fourier Transform

§ Start	ialltoall (second	plane)	and	transform	third
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Parallel Fast Fourier Transform

§ Start	ialltoall of	third	plane	and	…
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Parallel Fast Fourier Transform

§ Finish	ialltoall of	first	plane,	start	x transform
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Parallel Fast Fourier Transform

§ Finish	second	ialltoall,	transform	second	plane
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Parallel Fast Fourier Transform

§ Transform	last	plane	→	done
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FFT Software Pipelining
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MPI_Request req[nb];
for(int b=0; b<nb; ++b) { // loop over blocks

for(int x=b*n/p/nb; x<(b+1)n/p/nb; ++x) 1d_fft(/* x-th stencil*/);

// pack b-th block of data for alltoall
MPI_Ialltoall(&in, n/p*n/p/bs, cplx_t, &out, n/p*n/p, cplx_t, comm, &req[b]);

}
MPI_Waitall(nb, req, MPI_STATUSES_IGNORE);

// modified unpack data from alltoall and transpose
for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);
// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

Hoefler:	Leveraging	Non-blocking	Collective	Communication	in	High-performance	Applications



Nonblocking Collectives Summary

§ Nonblocking communication	does	two	things:
– Overlap	and	relax	synchronization

§ Collective	communication	does	one	thing
– Specialized	pre-optimized	 routines	

– Performance	 portability

– Hopefully	 transparent	 performance

§ They	can	be	composed
– E.g.,	software	 pipelining
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Topologies and Topology Mapping
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Topology Mapping and Neighborhood Collectives

§ Topology	mapping	basics
– Allocation	mapping	vs.	rank	reordering

– Ad-hoc	solutions	vs.	portability

§ MPI	topologies
– Cartesian

– Distributed	 graph

§ Collectives	on	topologies	– neighborhood	collectives
– Use	cases
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Topology Mapping Basics

§ MPI	supports	rank	reordering	
– Change	numbering	 in	a	given	allocation	to	reduce	congestion	or	

dilation

– Sometimes	automatic	 (early	IBM	SP	machines)

§ Properties
– Always	possible,	but	effect	may	be	limited	(e.g.,	 in	a	bad	allocation)

– Portable	way:	MPI	process	 topologies
• Network	topology	 is	not	exposed

– Manual	data	shuffling	after	 remapping	step
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Example: On-Node Reordering

Naïve	Mapping Optimized	Mapping

Topomap

Gottschling et	al.:	Productive	Parallel	Linear	Algebra	Programming	with	Unstructured	Topology	Adaption
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Off-Node (Network) Reordering

Application	 Topology Network	Topology

Naïve	Mapping Optimal	Mapping

Topomap
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MPI Topology Intro

§ Convenience	functions	(in	MPI-1)
– Create	 a	graph	and	query	it,	nothing	else

– Useful	especially	 for	Cartesian	 topologies
• Query	neighbors	 in	n-dimensional	 space

– Graph	 topology:	each	rank	specifies	 full	graph	L

§ Scalable	Graph	topology	(MPI-2.2)
– Graph	 topology:	each	rank	specifies	 its	neighbors	or an	arbitrary	

subset	of	the	graph

§ Neighborhood	collectives	(MPI-3.0)
– Adding	communication	 functions	defined	on	graph	topologies	

(neighborhood	 of	distance	one)
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MPI_Cart_create

§ Specify	ndims-dimensional	topology
– Optionally	periodic	in	each	dimension	 (Torus)

§ Some	processes	may	return	MPI_COMM_NULL
– Product	sum	of	dims	must	be	<=	P

§ Reorder	argument	allows	for	topology	mapping
– Each	calling	process	may	have	a	new	rank	in	the	created	communicator

– Data	has	to	be	remapped	manually

169Advanced	MPI,	SC16	(11/14/2016)

MPI_Cart_create(MPI_Comm comm_old, int ndims, const int *dims,
const int *periods, int reorder, MPI_Comm *comm_cart)



MPI_Cart_create Example

§ Creates	logical	3D	Torus	of	size	5	x	5	x	5

§ But	we’re	starting	MPI	processes	with	a	one-dimensional	
argument	(-p	X)
– User	has	to	determine	 size	of	each	dimension

– Often	as	“square”	as	possible,	MPI	can	help!
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int dims[3] = {5,5,5};
int periods[3] = {1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);



MPI_Dims_create

§ Create	dims	array	for	Cart_create with	nnodes and	ndims
– Dimensions	are	as	close	as	possible	 (well,	in	theory)

§ Non-zero	entries	in	dims	will	not	be	changed
– nnodes must	be	multiple	of	all	non-zeroes

171Advanced	MPI,	SC16	(11/14/2016)

MPI_Dims_create(int nnodes, int ndims, int *dims)



MPI_Dims_create Example

§ Makes	life	a	little	bit	easier
– Some	problems	may	be	better	 with	a	non-square	 layout	though
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int p;
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);



Cartesian Query Functions

§ Library	support	and	convenience!

§ MPI_Cartdim_get()
– Gets	dimensions	of	a	Cartesian	communicator

§ MPI_Cart_get()
– Gets	 size	of	dimensions

§ MPI_Cart_rank()
– Translate	 coordinates	 to	rank

§ MPI_Cart_coords()
– Translate	 rank	to	coordinates

173Advanced	MPI,	SC16	(11/14/2016)



Cartesian Communication Helpers

§ Shift	in	one	dimension
– Dimensions	are	numbered	 from	0	to	ndims-1

– Displacement	 indicates	neighbor	distance	(-1,	1,	…)

– May	return	MPI_PROC_NULL

§ Very	convenient,	all	you	need	for	nearest	neighbor	
communication
– No	“over	 the	edge”	though
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MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)



Code Example

§ stencil-mpi-carttopo.c

§ Adds	calculation	of	neighbors	with	topology
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MPI_Graph_create(MPI_Comm comm_old, int nnodes,
const int *index, const int *edges, int reorder,
MPI_Comm *comm_graph)

MPI_Graph_create

§ Don’t	use!!!!!

§ nnodes is	the	total	number	of	nodes

§ index	i stores	the	total	number	of	neighbors	for	the	first	i
nodes	(sum)
– Acts	as	offset	 into	edges	array

§ edges	stores	the	edge	list	for	all	processes
– Edge	list	for	process	 j	starts	at	index[j]	 in	edges

– Process	 j	has	index[j+1]-index[j]	 edges
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Distributed graph constructor

§ MPI_Graph_create is	discouraged
– Not	scalable

– Not	deprecated	 yet	but	hopefully	soon

§ New	distributed	interface:
– Scalable,	allows	distributed	 graph	specification

• Either	 local	neighbors	or any	edge	 in	the	graph

– Specify	edge	weights

• Meaning	 undefined	but	optimization	 opportunity	for	vendors!

– Info	arguments
• Communicate	 assertions	 of	semantics	 to	the	MPI	library

• E.g.,	semantics	 of	edge	weights

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
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MPI_Dist_graph_create_adjacent

§ indegree,	sources,	~weights	– source	proc.	Spec.
§ outdegree,	destinations,	~weights	– dest.	proc.	spec.
§ info,	reorder,	comm_dist_graph – as	usual
§ directed	graph
§ Each	edge	is	specified	twice,	once	as	out-edge	(at	the	source)	

and	once	as	in-edge	(at	the	dest)

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
178Advanced	MPI,	SC16	(11/14/2016)

MPI_Dist_graph_create_adjacent(MPI_Comm comm_old,
int indegree, const int sources[], const int sourceweights[],
int outdegree, const int destinations[],
const int destweights[], MPI_Info info, int reorder,
MPI_Comm *comm_dist_graph)



MPI_Dist_graph_create_adjacent

§ Process	0:
– Indegree:	 0

– Outdegree:	 2

– Dests:	{3,1}

§ Process	1:
– Indegree:	 3

– Outdegree:	 2

– Sources:	 {4,0,2}

– Dests:	{3,4}

§ …

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
179Advanced	MPI,	SC16	(11/14/2016)



MPI_Dist_graph_create

§ n	– number	of	source	nodes
§ sources	– n	source	nodes	
§ degrees	– number	of	edges	for	each	source
§ destinations,	weights	– dest.	processor	specification
§ info,	reorder	– as	usual
§ More	flexible	and	convenient	

– Requires	 global	communication

– Slightly	more	expensive	 than	adjacent	 specification
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MPI_Dist_graph_create(MPI_Comm comm_old, int n,
const int sources[], const int degrees[],
const int destinations[], const int weights[], MPI_Info info,
int reorder, MPI_Comm *comm_dist_graph)



MPI_Dist_graph_create

§ Process	0:
– N:	2

– Sources:	 {0,1}

– Degrees:	 {2,1} *

– Dests:		{3,1,4}

§ Process	1:
– N:	2

– Sources:	 {2,3}

– Degrees:	 {1,1}

– Dests:	{1,2}

§ …

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
181

*	Note	that	in	this	example,	process	0	specifies	only	one	of	the	two	outgoing	edges
of	process	1;	the	second	outgoing	edge	needs	to	be	specified	by	another	process
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Distributed Graph Neighbor Queries

§ Query	the	number	of	neighbors	of	calling	process
§ Returns	indegree and	outdegree!
§ Also	info	if	weighted

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
182Advanced	MPI,	SC16	(11/14/2016)

§ Query	the	neighbor	list	of	calling	process

§ Optionally	return	weights

MPI_Dist_graph_neighbors_count(MPI_Comm comm,
int *indegree,int *outdegree, int *weighted)

MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree,
int sources[], int sourceweights[], int maxoutdegree,
int destinations[],int destweights[])



Further Graph Queries

§ Status	is	either:
– MPI_GRAPH	 (ugs)

– MPI_CART

– MPI_DIST_GRAPH

– MPI_UNDEFINED	 (no	topology)

§ Enables	us	to	write	libraries	on	top	of	MPI	topologies!
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MPI_Topo_test(MPI_Comm comm, int *status)



Neighborhood Collectives 

§ Topologies	implement	no	communication!
– Just	helper	 functions

§ Collective	communications	only	cover	some	patterns
– E.g.,	no	stencil	pattern

§ Several	requests	for	“build	your	own	collective”	functionality	in	
MPI
– Neighborhood	collectives	 are	a	simplified	version

– Cf.	Datatypes	 for	communication	patterns!
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Cartesian Neighborhood Collectives

§ Communicate	with	direct	neighbors	in	Cartesian	topology
– Corresponds	 to	cart_shift with	disp=1

– Collective	 (all	processes	 in	comm must	call	it,	including	processes	
without	neighbors)

– Buffers	 are	 laid	out	as	neighbor	sequence:
• Defined	by	order	of	dimensions,	 first	negative,	then	positive

• 2*ndims sources	 and	destinations

• Processes	 at	borders	(MPI_PROC_NULL)	 leave	holes	 in	buffers	(will	not	be	
updated	or	communicated)!

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
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Cartesian Neighborhood Collectives

§ Buffer	ordering	example:

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
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Graph Neighborhood Collectives

§ Collective	Communication	along	arbitrary	neighborhoods
– Order	 is	determined	 by	order	of	neighbors	as	returned	 by	

(dist_)graph_neighbors.

– Distributed	 graph	is	directed,	may	have	different	 numbers	 of	
send/recv neighbors

– Can	express	 dense	collective	operations	J

– Any	persistent	 communication	pattern!

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
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MPI_Neighbor_allgather

§ Sends	the	same	message	to	all	neighbors

§ Receives	indegree distinct	messages

§ Similar	to	MPI_Gather
– The	all	prefix	expresses	 that	each	process	 is	a	“root”	of	his	

neighborhood

§ Vector	version	for	full	flexibility
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MPI_Neighbor_allgather(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)



MPI_Neighbor_alltoall

§ Sends	outdegree distinct	messages

§ Received	indegree distinct	messages

§ Similar	to	MPI_Alltoall
– Neighborhood	specifies	 full	communication	relationship

§ Vector	and	w	versions	for	full	flexibility
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MPI_Neighbor_alltoall(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)



Nonblocking Neighborhood Collectives

§ Very	similar	to	nonblocking	collectives

§ Collective	invocation

§ Matching	in-order	(no	tags)
– No	wild	tricks	with	neighborhoods!	 In	order	matching	per	

communicator!

190Advanced	MPI,	SC16	(11/14/2016)

MPI_Ineighbor_allgather(…, MPI_Request *req);
MPI_Ineighbor_alltoall(…, MPI_Request *req);



Code Example

§ stencil_mpi_carttopo_neighcolls.c

§ Adds	neighborhood	collectives	to	the	topology
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Why is Neighborhood Reduce Missing?

§ Was	originally	proposed	(see	original	paper)

§ High	optimization	opportunities
– Interesting	 tradeoffs!

– Research	 topic

§ Not	standardized	due	to	missing	use	cases
– My	team	is	working	on	an	implementation

– Offering	 the	obvious	 interface

MPI_Ineighbor_allreducev(…); 

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
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Topology Summary

§ Topology	functions	allow	users	to	specify	application	
communication	patterns/topology
– Convenience	 functions	 (e.g.,	Cartesian)

– Storing	neighborhood	 relations	 (Graph)

§ Enables	topology	mapping	(reorder=1)
– Not	widely	implemented	yet

– May	requires	manual	data	re-distribution	 (according	 to	new	rank	
order)

§ MPI	does	not	expose	information	about	the	network	topology	
(would	be	very	complex)
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Neighborhood Collectives Summary

§ Neighborhood	collectives	add	communication	functions	to	
process	topologies
– Collective	 optimization	potential!

§ Allgather
– One	item	to	all	neighbors

§ Alltoall
– Personalized	 item	to	each	neighbor

§ High	optimization	potential	(similar	to	collective	operations)
– Interface	 encourages	 use	of	topology	mapping!
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Section Summary

§ Process	topologies	enable:
– High-abstraction	 to	specify	communication	pattern

– Has	to	be	relatively	 static	(temporal	 locality)
• Creation	 is	expensive	 (collective)

– Offers	 basic	communication	 functions

§ Library	can	optimize:
– Communication	schedule	 for	neighborhood	 colls

– Topology	mapping
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Recent Efforts of the MPI Forum for MPI-4 
and Future MPI Standards



Introduction

§ The	MPI	Forum	continues	to	meet	every	3	months	to	define	
future	versions	of	the	MPI	Standard

§ We	describe	some	of	the	proposals	the	Forum	is	currently	
considering

§ None	of	these	topics	are	guaranteed	to	be	in	MPI-4
– These	are	simply	proposals	 that	are	being	considered
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MPI Working Groups

§ Point-to-point	communication

§ Fault	tolerance

§ Hybrid	programming

§ Persistence

§ Tools	interfaces

§ Large	counts

§ Others:	RMA,	Collectives,	I/O

§ http://meetings.mpi-forum.org/MPI_4.0_main_page.php
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Point-to-Point Working Group



Example Application: Genome Assembly
Basic	edge	merging	algorithm

106+ outstanding	messages
per	process	

(Human	genome	on	Cray	Edison	*)

remote	searchlocal	node

remote	nodes
ACGCGATTCAG

GCGATTCAGTA

DNA	consensus	 sequence

1. Send	local	DNA	unit	to	that	node;	
2. Search	matching	unit	on	that	node;	
3. Merge	two	units	on	that	node;
4. Return	merged	unit.

ACGCGATTCAG

ACGCGATTCAGTA

(64Bytes	~	1MBytes	for	single	message)

Step	1

Step	2,	3

Step	4

process	(server	1)

process	(server	2)

process	(server	3)

DNA	units	1:	
ACGCGATTCAG

DNA	units	3:	
ATGAGGCATAC

DNA	units	2:	
GCATAGTATCG

memory

process	(sender)

*	64GB	memory	per	node,	
1KB	memory	per	DNA	reads,	
exclude	runtime	memory	
consumption.

Large	amount	of	outstanding	 data	movement
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Proposal 1: Batched Communication Operations

§ MPI-3.1	semantics
– Each	point-to-point	 operation	creates	 a	new	request	 object

– MPI	library	might	run	out	of	request	objects	after	a	few	thousand	
operations

– Application	cannot	issue	a	lot	of	messages	 to	fully	utilize	 the	network

§ Batched	operations
– RMA-like	semantics	 for	MPI	send/recv communication

• Application	 frees	request	as	soon	as	the	operation	 is	issued

• Batch	completion	 of	all	operations	 on	a	communicator

– MPI_COMM_WAITALL

– Proportionally	 reduced	number	of	requests

– Can	allow	applications	 to	consolidate	multiple	completions	 into	a	
single	request
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Proposal 2: Communication Relaxation Hints

§ mpi_assert_no_any_tag
– The	process	will	not	use	MPI_ANY_TAG

§ mpi_assert_no_any_source
– The	process	will	not	use	MPI_ANY_SOURCE

§ mpi_assert_exact_length
– Receive	 buffers	must	be	correct	 size	for	messages

§ mpi_assert_overtaking_allowed
– All	messages	 are	logically	concurrent
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Fault Tolerance Working Group



204

Improved Support for Fault Tolerance

§ MPI	always	had	support	 for	error	handlers	and	allows	implementations	
to	return	an	error	code	and	remain	alive

§ MPI	Forum	working	on	additional	 support	 for	MPI-4

§ Current	 proposal	handles	 fail-stop	process	 failures	 (not	silent	data	
corruption	or	Byzantine	 failures)
§ If	a	communication	operation	fails	because	the	other	process	has	failed,	the	function	

returns	error	code	MPI_ERR_PROC_FAILED

§ User	can	call	MPI_Comm_shrink to	create	a	new	communicator	that	excludes	failed	
processes

§ Collective	communication	can	be	performed	on	the	new	communicator
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Proposal 1: Noncatastrophic Errors

§ Currently	the	state	of	MPI	is	undefined	if	any	error	occurs
§ Even	simple	errors,	such	as	incorrect	arguments,	can	cause	the	

state	of	MPI	to	be	undefined
§ Noncatastrophic errors	are	an	opportunity	for	the	MPI	

implementation	to	define	some	errors	as	“ignorable”
§ For	an	error,	the	user	can	query	if	it	is	catastrophic	or	not
§ If	the	error	is	not	catastrophic,	the	user	can	simply	pretend	like	

(s)he	never	issued	the	operation	and	continue
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Proposal 2: Error Handlers

§ Cleaner	semantics	for	error	handling
§ Even	with	MPI-3.1,	errors	are	not	always	fatal

– But	semantics	of	error	handling	are	cumbersome	 to	use
– Their	 specification	can	use	more	precision

§ How	are	error	handlers	inherited?
§ Move	default	error	handlers	from	MPI_COMM_WORLD	to	

MPI_COMM_SELF
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Proposal 3: User Level Failure Mitigation

● Enable	application-level	recovery	by	providing	minimal	FT	API	
to	prevent	deadlock	and	enable	recovery

●Don’t	do	recovery	for	the	application,	but	let	the	application	
(or	a	library)	do	what	is	best.

● Currently	focused	on	process	failure	(not	data	errors	or	
protection)
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Hybrid Programming Working Group



MPI-3.1 Performance/Interoperability Concerns

§ Resource	sharing	between	MPI	processes
– System	resources	 do	not	scale	at	the	same	rate	as	processing	 cores

• Memory,	network	endpoints,	 TLB	entries,	…
• Sharing	is	necessary

– MPI+threads gives	a	method	 for	such	sharing	of	resources

§ Performance	Concerns
– MPI-3.1	provides	 a	single	view	of	the	MPI	stack	to	all	threads

• Requires	 all	MPI	objects	(requests,	 communicators)	 to	be	shared	between	
all	threads

• Not	scalable	 to	large	number	of	threads
• Inefficient	when	sharing	of	objects	 is	not	required	by	the	user

– MPI-3.1	does	not	allow	a	high-level	 language	 to	interchangeably	 use	
OS	processes	 or	threads
• No	notion	of	addressing	 a	single	or	a	collection	 of	threads
• Needs	 to	be	emulated	with	tags	or	communicators

Advanced	MPI,	SC16	(11/14/2016) 209



MPI Endpoints: Proposal for MPI-4

§ Have	multiple	addressable	communication	entities	within	a	
single	process
– Instantiated	 in	the	form	of	multiple	ranks	per	MPI	process

§ Each	rank	can	be	associated	with	one	or	more	threads

§ Lesser	contention	for	communication	on	each	“rank”

§ In	the	extreme	case,	we	could	have	one	rank	per	thread	(or	
some	ranks	might	be	used	by	a	single	thread)

Advanced	MPI,	SC16	(11/14/2016) 210



MPI Endpoints Semantics

§ Creates	new	MPI	ranks	from	existing	ranks	in	parent	communicator
• Each	process	in	parent	comm.	requests	 a	number	of	endpoints
• Array	of	output	handles,	 one	per	local	rank	(i.e.	endpoint)	 in	endpoints	 communicator
• Endpoints	 have	MPI	process	 semantics	(e.g.	progress,	matching,	collectives,	…)

§ Threads	using	endpoints	 behave	like	MPI	processes
• Provide	per-thread	communication	 state/resources
• Allows	implementation	 to	provide	 process-like	 performance	for	threads

Parent
Comm

Rank

M T T

Parent	MPI	Process

RankRank Rank

M T T

Parent	MPI	Process

Rank Rank

M T T

Parent	MPI	Process

Rank
E.P.

Comm

MPI_Comm_create_endpoints(MPI_Comm parent_comm, int my_num_ep,
MPI_Info info, MPI_Comm out_comm_handles[])
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Persistence Working Group



Persistent Collective Operations
§ An	all-to-all	 transfer	 is	done	many	times	in	an	application

§ The	specific	 sends	and	receives	 represented	 never	change	 (size,	 type,	
lengths,	 transfers)

§ A	nonblocking persistent	 collective	operation	can	take	the	time	to	apply	a	
heuristic	and	choose	a	faster	 way	to	move	 that	data

§ Fixed	cost	of	making	those	decisions	could	be	high	(are	amortized	 over	all	
the	times	the	function	 is	used

§ Static	resource	 allocation	can	be	done

§ Choose	 fast(er)	 algorithm,	take	advantage	 of	special	 cases

§ Reduce	queueing	costs

§ Special	limited	hardware	 can	be	allocated	if	available

§ Choice	of	multiple	transfer	 paths	could	also	be	performed
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Basics

§ Mirror	regular	nonblocking collective	operations

§ For	each	nonblockingMPI	collective,	add	a	persistent	variant

§ For	every	MPI_I<coll>,	add	MPI_<coll>_init

§ Parameters	are	identical	to	the	corresponding	nonblocking
variant

§ All	arguments	“fixed”	for	subsequent	uses

§ Persistent	collective	operations	cannot	be	matched	with	
blocking	or	nonblocking collective	calls
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Init/Start

§ The	init function	calls	only	perform	initialization;	do	not	start	
the	operation

§ E.g.,	MPI_Allreduce_init
– Produces	a	persistent	 request	 (not	destroyed	by	completion)

§ Works	with	MPI_Start/MPI_Startall (cannot	have	multiple	
operations	on	the	same	communicator	in	Startall)

§ Only	inactive	requests	can	be	started

§ MPI_Request_free can	free	inactive	requests
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Ordering of Inits and Starts

§ Inits are	nonblocking collective	calls	and	must	be	ordered

§ Persistent	collective	operations	must	be	started	in	the	same	
order	at	all	processes

§ Startall cannot	contain	multiple	operations	on	the	same	
communicator	due	to	ordering	ambiguity
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Example
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Tools Working Group



Active Proposals (1/2)

§ New	interface	to	replace	PMPI
– Known,	longstanding	problems	with	the	current	profiling	interface	

PMPI
• One	tool	at	a	time	can	use	 it

• Forces	tools	to	be	monolithic	 (a	single	 shared	library)

• The	 interception	model	 is	OS	dependent

– New	interface
• Callback	design

• Multiple	 tools	can	potentially	 attach

• Maintain	 all	old	functionality

§ New	feature	for	event	notification	in	MPI_T
– PERUSE

– Tool	registers	 for	interesting	 event	and	gets	callback	when	 it	happens	
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Active Proposals (2/2)

§ Debugger	support	- MPIR	interface
– Fixing	some	bugs	in	the	original	“blessed”	document

• Missing	 line	numbers!

– Support	non-traditional	MPI	implementations

• Ranks	are	implemented	 as	threads

– Support	for	dynamic	applications
• Commercial	 applications/	 Ensemble	 applications

• Fault	tolerance

– Handle	 Introspection	 Interface
• See	inside	MPI	to	get	details	 about	MPI	Objects

– Communicators,	 File	Handles,	etc.
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Sessions Working Group



Before MPI-3.1, this could be erroneous

int my_thread1_main(void *context) {
MPI_Initialized(&flag);
// …

}

int my_thread2_main(void *context) {
MPI_Initialized(&flag);
// …

}

int main(int argc, char **argv) {
MPI_Init_thread(…, MPI_THREAD_FUNNELED, …);
pthread_create(…, my_thread1_main, NULL);
pthread_create(…, my_thread2_main, NULL);
// …

}

These	might
run	at	the	same	time	(!)
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What we want

§ Any	thread	(e.g.,	library)	can	use	MPI	any	time	it	wants

§ But	still	be	able	to	totally	clean	up	MPI	if/when	desired

§ New	parameters	to	initialize	the	MPI	API

MPI	Process
// Library 1
MPI_Init(…);

// Library 2
MPI_Init(…);

// Library 3
MPI_Init(…);

// Library 4
MPI_Init(…);

// Library 5
MPI_Init(…);

// Library 6
MPI_Init(…);// Library 7

MPI_Init(…);

// Library 8
MPI_Init(…);

// Library 9
MPI_Init(…);

// Library 10
MPI_Init(…);

// Library 11
MPI_Init(…);

// Library 12
MPI_Init(…);
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New Concept: “Session”

§ A	local	handle	to	the	MPI	library
– Implementation	 intent:	lightweight	 /	uses	very	few	resources

– Can	also	cache	some	local	state

§ Can	have	multiple	sessions	in	an	MPI	process
– MPI_Session_init(…,	 &session);

– MPI_Session_finalize(…,	 &session);

§ Each	session	is	a	unit	of	isolation

ocean	 library

MPI_SESSION_INIT

atmosphere	 library

MPI_SESSION_INIT

MPI	library

ocean	
session

atmosphere	
session

Unique	handles	 to	the	
underlying	MPI	library

Unique	
errhandlers,	
thread-levels,	
info,	local	
state,	etc.
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Overview

§ General	scheme:
– Query	the	underlying	 run-

time	system
• Get	a	“set”	of	processes

– Determine	 the	processes	 you	
want
• Create	an	MPI_Group

– Create	 a	communicator	with	
just	those	processes
• Create	an	MPI_Comm

Query	runtime
for	set	of	processes

MPI_Group

MPI_Comm

MPI_Session

Advanced	MPI,	SC16	(11/14/2016) 225



Static sets of processes

§ Two	sets	are	mandated	to	exist
1. A	set	of	processes	 effectively	 equivalent	 to	the	processes	 in	MPI-

3.1’s	MPI_COMM_WORLD

2. A	set	containing	only	a	single	process

§ Sets	are	identified	by	string	name
– “mpi://WORLD”:	refers	 to	set	#1,	above

– “mpi://SELF”:	refers	 to	set	#2,	above

§ By	definition,	processes	will	be	in	more	than	one	set
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Large Counts Working Group



Problem with Large Counts

§ MPI_Send/Recv and	other	functions	take	“int”	as	the	count	
for	data
– What	happens	 for	data	larger	than	2GB	x	datatype size?

– You	create	a	new	large	“contiguous”	derived	 datatype and	send	that

– Possible,	but	clumsy

§ What	about	duplicating	all	MPI	functions	to	change	“int”	to	
“MPI_Count”	(which	is	a	large,	typically	64-bit,	integer)
– Doubles	 the	number	of	MPI	functions

– Possible,	but	clumsy
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New C11 Bindings

§ Use	C11	_Generic	type	to	provide	multiple	function	
prototypes
– Like	C++	 function	overloading,	 but	done	with	compile	 time	macro	

replacement

§ MPI_Sendwill	have	two	function	signatures
– One	for	traditional	 “int”	arguments

– One	for	new	“MPI_Count”	arguments

§ Fully	backward	compatible	for	existing	applications

§ New	applications	can	promote	their	data	lengths	to	64-bit	
without	changing	functions	everywhere
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Concluding Remarks



Conclusions

§ Parallelism	is	critical	today,	given	that	it	is	the	only	way	to	
achieve	performance	improvement	with	modern	hardware

§ MPI	is	an	industry	standard	model	for	parallel	programming
– A	large	number	of	implementations	 of	MPI	exist	 (both	commercial	and	

public	domain)

– Virtually	every	system	in	the	world	supports	MPI

§ Gives	user	explicit	control	on	data	management

§ Widely	used	by	many	scientific	applications	with	great	success

§ Your	application	can	be	next!
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Web Pointers

§ MPI	standard	 :	http://www.mpi-forum.org/docs/docs.html

§ MPI	Forum	:	http://www.mpi-forum.org/

§ MPI	implementations:	
– MPICH	:	http://www.mpich.org

– MVAPICH	:	http://mvapich.cse.ohio-state.edu/

– Intel	MPI:	http://software.intel.com/en-us/intel-mpi-library/

– Microsoft	MPI:	https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

– Open	MPI	:	http://www.open-mpi.org/

– IBM	MPI,	Cray	MPI,	HP	MPI,	TH	MPI,	…

§ Several	MPI	tutorials	can	be	found	on	the	web
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New Tutorial Books on MPI
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§ For	basic	MPI
– Using	MPI,	3rd edition,	2014,	by	William	Gropp,	Ewing	Lusk	and	Anthony	Skjellum

– https://mitpress.mit.edu/using-MPI-3ed

§ For	advanced	MPI,	including	MPI-3

– Using	Advanced	MPI,	2014,	by	William	Gropp,	Torsten Hoefler,	Rajeev	Thakur	and	
Ewing	Lusk

– https://mitpress.mit.edu/using-advanced-MPI



New Book on Parallel Programming Models
Edited	by	Pavan Balaji
• MPI: W.	Gropp and	R.	Thakur
• GASNet: P.	Hargrove
• OpenSHMEM: J.	Kuehn	and	S.	Poole
• UPC: K.	Yelick and	Y.	Zheng
• Global	Arrays: S.	Krishnamoorthy,	J.	Daily,	A.	Vishnu,	

and	B.	Palmer
• Chapel: B.	Chamberlain
• Charm++: L.	Kale,	N.	Jain,	and	J.	Lifflander
• ADLB: E.	Lusk,	R.	Butler,	and	S.	Pieper
• Scioto: J.	Dinan
• SWIFT: T.	Armstrong,	J.	M.	Wozniak,	M.	Wilde,	and	I.	

Foster
• CnC: K.	Knobe,	M.	Burke,	and	F.	Schlimbach
• OpenMP: B.	Chapman,	D.	Eachempati,	and	S.	

Chandrasekaran
• Cilk Plus: A.	Robison	and	C.	Leiserson
• Intel	TBB: A.	Kukanov
• CUDA: W.	Hwu and	D.	Kirk
• OpenCL: T.	Mattson

https://mitpress.mit.edu/models
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